
ASYNC TASKS WITH
 DJANGO CHANNELS

PyCon Canada 2016
Albert O’Connor

@amjoconn
albertoconnor.ca

What is Channels?

The most exciting thing to
happen to Django since Django

⚠
Warnings

I won’t be talking about
WebSockets

The Channels Docs have a good intro tutorial on WebSockets
https://channels.readthedocs.io/en/stable/getting-started.html

https://channels.readthedocs.io/en/stable/getting-started.html

I expect you are familiar with
Django

So, Channels is…

A library which allows Django to handle
more than just plain HTTP Requests

Created by Andrew Godwin

Supported by a Mozilla MOSS Grant

An “official” Django project

Problem:
How to support WebSockets

in Django

Solution:
Another level of abstraction

Django

Receives a HTTP Request, calls a view
which returns an HTTP Response

Channels

Receives a message, calls a consumer
which can send other messages

Django Channels

Receive a HTTP Request message,
calls a consumer which calls a view

The view returns a HTTP Response, the
consumer send the message to the

http.response channel

Abstraction!

browser

WSGI

HTTP Request

Django

your view

HTTP Response

browser

ASGI

HTTP Request

Channels

your view

HTTP Response

view_consumer

browser

ASGI

HTTP Request

Channels

your view

HTTP Response

view_consumer

messagehttp.request message http.response!foo

Django HTTP Request Django HTTP Response

There are WebSocket
specific channels including

websocket.connect and
websocket.receive

But…
You can create your own channel!

Channels are named queues
on a message bus

We are going to create a channel to
deal with an async background task

⚠
Warning

At-most-once delivery

Ordering is also worth thinking about:
https://channels.readthedocs.io/en/stable/getting-started.html#enforcing-ordering

http://channels.readthedocs.io/en/stable/getting-started.html#enforcing-ordering

Quick Examples

How do you add
Channels to your project?

Pip install channels and add
it to INSTALLED_APPS

Channels “replaces” WSGI with ASGI

Installing Channels includes a
ASGI server called Daphne
implemented with Twisted

Django gains a runworker
management command

For development runserver works by
running workers and Daphne in one

process using threads

For production an ASGI broker is needed
between Daphne and the workers

asgi_redis + redis server
is a great option

Daphne handles HTTP,
WebSockets, and more, enqueuing

messages into the right channel

Views and consumers can also
enqueue messages into channels

This means your view and consumer
code is written synchronously

https://www.flickr.com/photos/moonlightbulb/3338852116

https://www.flickr.com/photos/moonlightbulb/3338852116

Demo
https://github.com/albertoconnor/asyncdemo

Tag: step1
Basic Django app with a view which says
hello and simulates sending a notification

In hello/views.py
def delay():
 while True:
 for i in [5, 5, 5, 30]: # Simulate unreliability
 yield i
delay_generator = delay()

def send_notification(message):
 time.sleep(next(delay_generator))
 print(message) # Simulate sending to slack etc.

def hello_view(request, template="hello.html"):
 name = request.GET.get('name', 'World')
 message = 'Hello, {}!'.format(name)

 send_notification(message)

 return render(
 request,
 template,
 dict(message=message),
)

Tag: step2
Install Channels and update settings

In requirements.txt
django==1.10.2
channels==0.17.3

Successfully installed
asgiref-0.14.0

autobahn-0.16.0
channels-0.17.3
daphne-0.15.0

six-1.10.0
twisted-16.4.1

txaio-2.5.1
zope.interface-4.3.2

In asyncdemo/settings.py
INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 ...
 'channels',
)

CHANNEL_LAYERS = {
 "default": {
 "BACKEND": "asgiref.inmemory.ChannelLayer",
 "ROUTING": "asyncdemo.routing.channel_routing",
 },
}

In routing.py
from channels.routing import route

channel_routing = []

Performing system checks...

System check identified no issues (0 silenced).
November 10, 2016 - 11:43:12
Django version 1.10.2, using settings 'asyncdemo.settings'
Starting Channels development server at http://127.0.0.1:8001/
Channel layer default (asgiref.inmemory.ChannelLayer)
Quit the server with CONTROL-C.
2016-11-10 11:43:12,340 - INFO - worker - Listening on channels http.request, websocket.connect, websocket.receive
2016-11-10 11:43:12,340 - INFO - worker - Listening on channels http.request, websocket.connect, websocket.receive
2016-11-10 11:43:12,341 - INFO - worker - Listening on channels http.request, websocket.connect, websocket.receive
2016-11-10 11:43:12,341 - INFO - worker - Listening on channels http.request, websocket.connect, websocket.receive
2016-11-10 11:43:12,347 - INFO - server - Using busy-loop synchronous mode on channel layer

Tag: step3
Create channel and use it

In hello/views.py
from django.shortcuts import render
from channels import Channel

def hello_view(request, template="hello.html"):
 name = request.GET.get('name', 'World')

 message = 'Hello, {}!'.format(name)
 Channel('notify').send(
 dict(
 message=message,
)
)

 return render(
 request,
 template,
 dict(message=message),
)

In asyncdemo/routing.py
from channels.routing import route

from hello import consumers

channel_routing = [
 route('notify', consumers.notify),
]

In hello/consumers.py
import time

def delay():
 while True:
 for i in [5, 5, 5, 30]:
 yield i
delay_generator = delay()

def notify(message):
 time.sleep(next(delay_generator))
 print(message['message'])

Now the website is responsive
until it gets backed up

Tag: bonusround
Use redis, Daphne and
run separate processes

In requirements.txt
django==1.10.2
channels==0.17.3
asgi_redis==0.14.1 # Also need redis running

In asyncdemo/settings.py
CHANNEL_LAYERS = {
 "default": {
 "BACKEND": "asgi_redis.RedisChannelLayer",
 "CONFIG": {
 "hosts": ['redis://localhost:6379'],
 },
 "ROUTING": "asyncdemo.routing.channel_routing",
 },
}

This should be enough to get
runserver working again

To use Daphne we need to
create asgi.py similar to wsgi.py

In asyncdemo/asgi.py
import os
import channels.asgi

os.environ.setdefault(
 "DJANGO_SETTINGS_MODULE",
 "asyncdemo.settings"
)

channel_layer = channels.asgi.get_channel_layer()

daphne asyncdemo.asgi:channel_layer --port 8000

Now we need some workers

python manage.py runworker

python manage.py runworker --exclude-channels=notify

That’s it!

Now go forth and write
readable async code

ASYNC TASKS WITH
 DJANGO CHANNELS

This was…

Thanks!
Questions?

PyCon Canada 2016
Albert O’Connor

@amjoconn
albertoconnor.ca

